
CSC413 Final Project

Philipp Eibl
Department of Computer Science

University of Toronto
philipp.eibl@mail.utoronto.ca

Jaipratap Grewal
Department of Computer Science

University of Toronto
jp.grewal@mail.utoronto.ca

Jason Lee
Department of Computer Science

University of Toronto
jasonkjl.lee@mail.utoronto.ca

Abstract

Paragraph/Context-based question-answer neural networks have been researched
for quite a while. In a similar light, we compare the performance of various types of
word embedding models on reading comprehension based questions using different
types of classifier models.

1 Introduction

This project is based on reading comprehension with neural networks - one of the hot research topics
in recent times. We compare the effectiveness of different word embeddings in the task of classifying
a question/answer pair as correct or incorrect.

Specifically, given a reading passage (ex. “In meteorology, precipitation is any product of the
condensation of atmospheric water vapor that falls under gravity”), an input query (ex. “What causes
precipitation to fall?”), and a proposed answer as a sequence of text from the passage (“gravity”), we
want a model that determines whether the proposed sequence correctly answers the input query.

2 Related Works

A number of approaches have been developed to tackle the problem of question answering. The most
successful models mostly stem from the last 10 years, with a great abundance in neural approaches.
Below are examples of the papers discussed in this project.
Word2Vec: A 2-layer neural network is used in either one of the Continuous Bag of Words (CBOW)
or Skip-gram model, where the former produces attempts to predict a word using its surrounding
words in a sequence and the latter predicts the surrounding words given only one input word.
GloVe: Similar to word2vec, GloVe also attempts to encode the co-occurrence probability ratios of
two words into the vector mapping of a given word.
BERT: Aside from using a more complex architecture, BERT’s transformer encoder takes in an entire
sequence at once (as opposed to the previous models, which read one token at a time from left to
right). Two other notable differences of BERT are [MASK] tokens and next sentence prediction,
which it does using a bi-directional architecture.
GPT: While similar to BERT, GPT only looks at the previous word(s) in context when predicting
ahead (in training), compared to BERT which looks at the context word before/after.

3 Methods

3.1 Data Processing

The first task deals with processing the JSON formatted file containing the SQuAD dataset. We
clean the data by breaking it into arrays containing the paragraphs (from now on contexts), questions,
answers, and the corresponding labels (correct/incorrect). Being given only the correct answers, as
the original task deals with picking an answer from the context and comparing with the correct one,
we manually picked substrings from the context and add them as incorrect training example (making
sure we don’t pick the correct answer randomly!). Note that this allowed us to add arbitrary incorrect
answers for one correct answer.

3.2 Models

We worked with 4 pre-trained models (BERT, GPT, Word2Vec, GloVE) to generate the word
embeddings (further finetuning was not considered due to level of resources needed), and we trained
3 types of ML models to compare the performance of these embeddings (Linear, Linear + ReLU,
Random Forest), in addition to a random baseline.

3.2.1 BERT & GPT

We used an open source PyTorch implementation of the transformers (similar to A2). The resulting
tokenizers were used to act upon the context, question, answer arrays to retrieve 512 (maximum
parameter length) component vectors and the corresponding attention masks (as BERT, GPT are
directional/bi-directional sequence based). The only difference for the procedure between the two
was that BERT incorporates start/end of sentence tokens in its examples. It was a similar case when
comparing with BERT, which did much better than these two models.

For a single training example, we concatenate all three vectors (1 for the reading passage, 1 for
the question, 1 for the answer) into a single 1536 vector which is used as input into our linear
classification model.

3.2.2 Word2Vec & GloVe

Figure 1: Algorithm

We utilised similar open source models as in A1. For
the word2vec embeddings, we used word-to-vector
mappings based on a model trained on the Brown
corpus (a fairly old and small text corpus, so a more
recent and/or bigger one would most likely result in
higher classification accuracies). Similarly the GloVe
model uses 50-dimensional embeddings from a pre-
trained that was trained on an openly available dataset
comprising of 6bn words from Wikipedia articles in
2014. A model pre-trained on a 42bn-word corpus
using 300 dimensional embeddings resulted only in
a marginal increase in accuracy, leading us to use
the much more computationally efficient corpus men-
tioned before. We then used the word embeddings
to test 2 separate approaches for classification: First,
use a distance measure (one of cosine similarity or
euclidean distance) of the answer token embedding(s) and the mean of the context token embeddings
as a threshold to classify whether the answer token is correct. Second, pick the sentence in the context
with the highest similarity to the question (using the mean vectors of the token embeddings), then use
only the similarity of that phrase and the answer-candidate as a threshold.

3.2.3 Classification Models

One model was a simple fully-connected layer corresponding to the dimension of the output word
embedddings. The second model incorporated a non-linearity by using a ReLU activation layer in

2

between two fully-connected layers. For further performance comparisons, a simple ’sklearn’ based
Random Forest with varying tree-depth and parameters was used.

Note: All models were added on top of the embedding architectures. A random baseline was also
used for comparison.

4 Results/Discussion

932 Q/A pairs
BERT(2 layer) 0.823
GPT(2 layer) 0.759

BERT(1 layer) 0.764
GPT(1 layer) 0.754

BERT/GPT Random Forest 0.860
word2vec 0.747

GloVe 0.780
Random Model 0.487

17868 Q/A pairs
BERT(2 layer) .741
GPT(2 layer) .742

BERT(1 layer) .739
GPT(1 layer) .734

BERT/GPT Random Forest 0.792
word2vec 0.748

GloVe 0.755
Random Model .506

Figure 2: Val Acc/Epoch: 2 Layer, 300 Paras

Figure 3: Val Acc/Epoch: 1 Layers, 300 Paras

Figure 4: Val Acc/Epoch: 2 Layers, 30 Paras

Figure 5: Val Acc/Epoch: 1 Layer, 30 Paras

Our experiments correspond to the performance of these various
mentioned word-embeddings under the classification models.

The results on various number of Q/A pairs is shown
above - with the BERT/GPT being trained for 35/50 epochs,
thus helping to maintain a uniform standard, whereas the
Word2Vec/GloVE models predicted the answers directly - but
we also analyse the effects of number of paragraphs.

4.1 Classification Models (for BERT/GPT)

We expected the random-forest classifier to perform the best due
to its highest non-linear nature out of the bunch. The logistic
regression model was expected to be a close second because
first, the random-forest may not always correspond well to NLP
tasks, and second, the ReLU non-linearity gives a better truth-
approximator than say the linear layer - which was predicted
to have the lowest accuracy.

The results matched very well with expectations. To begin, the
random baseline model corresponded to about 51% accuracy,
and as we mention next, all models performed much better than
the baseline.

BERT + Single Layer gave an accuracy of .751, compared to
BERT + Two layer, which gave an accuracy of .782. GPT +
Single layer gave an average accuracy of .744, whereas the
two layer model gave .75. Lastly, the random forest classifier
overfits the data badly (training acc: .99, val acc: .85) but gave
similar results on the BERT/GPT.

4.2 BERT vs. GPT

It was difficult to predict a-priori which one of these two models
would perform better. But comparing the results across all
categories clarifies that BERT had a better performance in most
cases. This may be because the joint bi-directional conditioning
suits better to this task/dataset as compared to GPT.

An interesting trend to note is that the validation accuracy
peaks quite early on for the 2-layer models (300 & 30 paras)
and mostly stabilises for the rest of the training whereas both
1-layer runs, the validation accuracy peaks slower but is highly

3

unstable. The variance can be attributed to the amount of
different words and types of sentence structuring - which one
can expect to be more when choosing more paragraphs/pairs to
train/test on. But at the same time this points to the instability
of the linear layer and how much a small non-linear activation
can help improve performance/stabilization.

Given its much more sophisticated architecture it was reason-
able to expect GPT/BERTS’s performance to beat previous approaches by a decent margin. With an
improvement of around 10 absolute percentage points, it is clear that this model(s) offers a statistically
significant boost in comparison to both word2vec and GloVe, who both reached peak accuracy of less
than 80 percent.

With respect to the latter two, we experimented with multiple tests including different similarity
measures (cosine vs. euclidean), picking the phrase in the context that most likely contains the
answer sequence as the new "paragraph", as well as choosing different threshold similarity values for
classification. We can note that perhaps not surprisingly, GloVe outperformed Word2Vec by a few
absolute percentage points in every test.

Overall, our experiments seem to confirm that transformer-based models perform much better than
more traditional embedding models. Most of the times, it seems that BERT is the best model, but this
may change on different tasks/contexts/datasets.

4

unstable. The variance can be attributed to the amount of different words and types of sentence
structuring - which one can expect to be more when choosing more paragraphs/pairs to train/test on.
But at the same time this points to the instability of the linear layer and how much a small non-linear
activation can help improve performance/stabilization.

4.3 Word2Vec/GloVe vs GPT/BERT

Given its much more sophisticated architecture it was reasonable to expect GPT/BERTS’s perfor-
mance to beat previous approaches by a decent margin. With an improvement of around 10 absolute
percentage points, it is clear that this model(s) offers a statistically significant boost in comparison to
both word2vec and GloVe, who both reached peak accuracy of less than 80 percent.

With respect to the latter two, we experimented with multiple tests including different similarity
measures (cosine vs. euclidean), picking the phrase in the context that most likely contains the
answer sequence as the new "paragraph", as well as choosing different threshold similarity values for
classification. We can note that perhaps not surprisingly, GloVe outperformed Word2Vec by a few
absolute percentage points in every test.

5 Conclusion

Overall, our experiments seem to confirm that transformer-based models perform much better than
more traditional embedding models. Most of the times, it seems that BERT is the best model, but this
may change on different tasks/contexts/datasets.

Secondly, our results are only based on a small, random subset of questions from the SQuAD data-set
(less than 10%) and no fine-tuning of the BERT/GPT themselves, which if taken into account may
give even more significant results. We predict that GPT may actually perform even better on the
whole of SQuAD due to its sheer parameter size.

All in all, we estimate such transformer-based models will influence the present as well the coming
future with their powerful architectures/new research.

Contributions

Philipp, Jaipratap, Jason worked on the (Word2Vec, GloVE), BERT, GPT respectively and double
checked each others’ work too. For the compilation of the report, all three authors added to the
Methods/Discussion after discussing the results of their coded models. Overall, everyone contributed
equally and helped each other out.

References
[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

[3] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

[4] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[5] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016.

4

	Introduction
	Related Works
	Methods
	Data Processing
	Models
	BERT & GPT
	Word2Vec & GloVe
	Classification Models

	Results/Discussion
	Classification Models (for BERT/GPT)
	BERT vs. GPT
	Word2Vec/GloVe vs GPT/BERT

	Conclusion

